Tissue-Engineered Core-Shell Silk-Fibroin/Poly-l-Lactic Acid Nerve Guidance Conduit Containing Encapsulated Exosomes of Human Endometrial Stem Cells Promotes Peripheral Nerve Regeneration

ACS Biomater Sci Eng. 2023 Jun 12;9(6):3496-3511. doi: 10.1021/acsbiomaterials.3c00157. Epub 2023 May 9.

Abstract

Nerve guide conduits (NGCs) have been shown to be less efficient than nerve autografts in peripheral nerve regeneration. To address this issue, we developed for the first time a novel tissue-engineered nerve guide conduit structure encapsulated with human endometrial stem cell (EnSC) derived exosomes, which promoted nerve regeneration in rat sciatic nerve defects. In this study, we initially indicated the long-term efficacy and safety impacts of newly designed double layered SF/PLLA nerve guide conduits. Then the regeneration effects of SF/PLLA nerve guide conduits containing exosomes derived from human EnSCs were evaluated in rat sciatic nerve defects. The human EnSC derived exosomes were isolated from the supernatant of human EnSC cultures and characterized. Subsequently, the human EnSC derived exosomes were encapsulated in constructed NGCs by fibrin gel. For in vivo studies, entire 10 mm peripheral nerve defects were generated in rat sciatic nerves and restored with NGC encapsulated with human EnSC derived exosomes (Exo-NGC group), nerve guide conduits, and autografts. The efficiency of the NGCs encapsulated with human EnSCs derived exosomes in assisting peripheral nerve regeneration was investigated and compared with other groups. The in vivo results demonstrated that encapsulated human EnSC derived exosomes in NGC (Exo-NGC) significantly benefitted nerve regeneration based on motor function, sensory reaction, and electrophysiological results. Furthermore, immunohistochemistry with histopathology results showed the formation of regenerated nerve fibers, along with blood vessels that newly were developed, as a result of the exosome functions in the Exo-NGC group. These outcomes illustrated that the newly designed core-shell SF/PLLA nerve guide conduit encapsulated with human EnSC derived exosomes enhanced the regeneration process of axons and improved the functional recovery of rat sciatic nerve defects. So, encapsulated human EnSC-derived exosomes in a core-shell SF/PLLA nerve guide conduit are a potential therapeutic cell-free treatment for peripheral nerve defects.

Keywords: double layer nerve guide conduit; electrospinning method; exosome; human endometrial cells (EnSCs); sciatic nerve regeneration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Exosomes*
  • Fibroins*
  • Guided Tissue Regeneration* / methods
  • Humans
  • Nerve Regeneration / physiology
  • Rats
  • Rats, Sprague-Dawley
  • Sciatic Nerve / pathology
  • Sciatic Nerve / physiology
  • Tissue Scaffolds / chemistry

Substances

  • poly(lactide)
  • Fibroins