Endocrine changes during the peripartal period related to colostrogenesis in mammalian species

J Anim Sci. 2023 Jan 3:101:skad146. doi: 10.1093/jas/skad146.

Abstract

This review discusses endocrine and functional changes during the transition from late gestation to lactation that are related to the production of colostrum in different mammalian species. Species covered in this article include ungulate species (cattle, sheep, goats, pigs, horses), rodents (rat, mouse), rabbits, and carnivores (cats, dogs), as well as humans. An immediate availability of high quality colostrum for the newborn after birth is crucial in species where a transfer of immunoglobulins (Ig) does not or only partially occur via the placenta during pregnancy. Declining activity of gestagens, in most species progesterone (P4), is crucial at the end of pregnancy to allow for the characteristic endocrine changes to initiate parturition and lactation, but the endocrine regulation of colostrogenesis is negligible. Both, the functional pathways and the timing of gestagen withdrawal differ considerably among mammalian species. In species with a sustaining corpus luteum throughout the entire pregnancy (cattle, goat, pig, cat, dog, rabbit, mouse, and rat), a prostaglandin F2α (PGF2α)-induced luteolysis shortly before parturition is assumed to be the key event to initiate parturition as well as lactogenesis. In species where the gestagen production is taken over by the placenta during the course of gestation (e.g., sheep, horse, and human), the reduction of gestagen activity is more complex, as PGF2α does not affect placental gestagen production. In sheep the steroid hormone synthesis is directed away from P4 towards estradiol-17β (E2) to achieve a low gestagen activity at high E2 concentrations. In humans the uterus becomes insensitive to P4, as parturition occurs despite still high P4 concentrations. However, lactogenesis is not completed as long as P4 concentration is high. Early colostrum and thus Ig intake for immune protection is not needed for the human newborn which allows a delayed onset of copious milk secretion for days until the placenta expulsion causes the P4 drop. Like humans, horses do not need low gestagen concentrations for successful parturition. However, newborn foals need immediate immune protection through Ig intake with colostrum. This requires the start of lactogenesis before parturition which is not fully clarified. The knowledge of the endocrine changes and related pathways to control the key events integrating the processes of colostrogenesis, parturition, and start of lactation are incomplete in many species.

Keywords: FcRn; colostrogenesis; endocrinology; lactogenesis; parturition.

Plain language summary

This manuscript reviews and compares hormonal and functional changes occurring in the conceptus (embryo and its extra-embryonic membranes) and their effects on the mammary gland during development from pregnancy to colostrum formation and milk production in multiple mammalian species. Declining activity of gestagens at the end of pregnancy is crucial to allow for both parturition and onset of milk production in most mammals. Strategies to achieve this state of low gestagen activity are different among species. In species where the corpus luteum is sustained throughout the entire pregnancy, luteolysis is the key event to initiate parturition and onset of milk secretion (cattle, goat, pig, cat, dog, rat, mouse, rabbit). However, in species where the placenta takes over gestagen production during the course of pregnancy, the achievement of a state of low gestagen activity is more complex. It ranges from redirection of the hormone production pathway away from gestagens in sheep, to decreasing sensitivity of the uterus towards gestagens in humans. In the horse, there is evidence pointing towards redirection of the hormone production as well as a decrease in sensitivity towards gestagens, but the exact mechanisms are still not clarified.

Publication types

  • Review

MeSH terms

  • Animals
  • Cattle
  • Colostrum / metabolism
  • Dinoprost*
  • Dogs
  • Female
  • Horses
  • Humans
  • Mice
  • Parturition
  • Placenta / metabolism
  • Pregnancy
  • Progesterone / metabolism
  • Progestins*
  • Rabbits
  • Rats
  • Rodentia / metabolism
  • Sheep
  • Swine

Substances

  • Progestins
  • Dinoprost
  • Progesterone