Multi-functional terahertz metamaterials based on nano-imprinting

Opt Express. 2023 Mar 13;31(6):9224-9235. doi: 10.1364/OE.481919.

Abstract

This paper reports a multi-functional terahertz (THz) metamaterial based on a nano-imprinting method. The metamaterial is composed of four layers: 4 L resonant layer, dielectric layer, frequency selective layer, and dielectric layer. The 4 L resonant structure can achieve broadband absorption, while the frequency selective layer can achieve transmission of specific band. The nano-imprinting method combines electroplating of nickel mold and printing of silver nano-particle ink. Using this method, the multilayer metamaterial structures can be fabricated on ultrathin flexible substrates to achieve visible light transparency. For verification, a THz metamaterial with broadband absorption in low frequency and efficient transmission in high frequency is designed and printed. The sample's thickness is about 200 µm and area is 65 × 65 mm2. Moreover, a fiber-based multi-mode terahertz time-domain spectroscopy system was built to test its transmission and reflection spectra. The results are consistent with the expectations.