Femtosecond laser fabrication of chirped and tilted fiber Bragg gratings for stimulated Raman scattering suppression in kilowatt-level fiber lasers

Opt Express. 2023 Apr 10;31(8):13393-13401. doi: 10.1364/OE.485143.

Abstract

Chirped and tilted fiber Bragg gratings (CTFBGs) are important all-fiber filtering components in high-power fiber lasers for stimulated Raman scattering (SRS) suppression. The fabrication of CTFBGs in large-mode-area double-cladding fibers (LMA-DCFs) by femtosecond (fs) laser is reported for the first time to the best of our knowledge. The chirped and tilted grating structure is obtained by scanning the fiber obliquely and moving the fs-laser beam relative to the chirped phase mask at the same time. By this method, the CTFBGs with different chirp rates, grating lengths, and tilted angles are fabricated, and the maximum rejection depth and bandwidth are ∼25 dB and ∼12 nm, respectively. To test the performance of the fabricated CTFBGs, one is inserted between the seed laser and the amplifier stage of a 2.7 kW fiber amplifier, and an SRS suppression ratio of ∼4 dB is achieved with no reduction in laser efficiency and degradation in beam quality. This work provides a highly fast and flexible method to fabricate large-core CTFBGs, which is of great significance to the development of high-power fiber laser systems.