High-precision angular rate detection based on an optomechanical micro hemispherical shell resonator gyroscope

Opt Express. 2023 Apr 10;31(8):12433-12448. doi: 10.1364/OE.482859.

Abstract

Cavity optomechanics with picometer displacement measurement resolution has shown vital applications in high-precision sensing areas. In this paper, an optomechanical micro hemispherical shell resonator gyroscope (MHSRG) is proposed, for the first time. The MHSRG is driven by the strong opto-mechanical coupling effect based on the established whispering gallery mode (WGM). And the angular rate is characterized by measuring the transmission amplitude changing of laser coupled in and out from the optomechanical MHSRG based on the dispersive resonance wavelength shift and/or dissipative losses varying. The detailed operating principle of high-precision angular rate detection is theoretically explored and the fully characteristic parameters are numerically investigated. Simulation results show that the optomechanical MHSRG can achieve scale factor of 414.8 mV/ (°/ s) and angular random walk of 0.0555 °/ h1/2 when the input laser power is 3 mW and resonator mass is just 98 ng. Such proposed optomechanical MHSRG can be widely used for chip-scale inertial navigation, attitude measurement, and stabilization.