Targeted Enzyme Activity Imaging with Quantitative Phase Microscopy

Nano Lett. 2023 May 24;23(10):4602-4608. doi: 10.1021/acs.nanolett.3c01090. Epub 2023 May 8.

Abstract

Quantitative phase imaging (QPI) is a powerful optical imaging modality for label-free, rapid, and three-dimensional (3D) monitoring of cells and tissues. However, molecular imaging of important intracellular biomolecules such as enzymes remains a largely unexplored area for QPI. Herein, we introduce a fundamentally new approach by designing QPI contrast agents that allow sensitive detection of intracellular biomolecules. We report a new class of bio-orthogonal QPI-nanoprobes for in situ high-contrast refractive index (RI) imaging of enzyme activity. The nanoprobes feature silica nanoparticles (SiO2 NPs) having higher RI than endogenous cellular components and surface-anchored cyanobenzothiazole-cysteine (CBT-Cys) conjugated enzyme-responsive peptide sequences. The nanoprobes specifically aggregated in cells with target enzyme activity, increasing intracellular RI and enabling precise visualization of intracellular enzyme activity. We envision that this general design of QPI-nanoprobes could open doors for spatial-temporal mapping of enzyme activity with direct implications for disease diagnosis and evaluating the therapeutic efficacy.

Keywords: Bio-orthogonal reactions; Enzymes; Quantitative phase imaging; Refractive index imaging; Silica nanoparticles; Targeted imaging.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Microscopy* / methods
  • Nanoparticles* / chemistry
  • Optical Imaging / methods
  • Silicon Dioxide / chemistry

Substances

  • Silicon Dioxide