Plant growth-promoting rhizobacteria are important contributors to rice yield in karst soils

3 Biotech. 2023 May;13(5):158. doi: 10.1007/s13205-023-03593-0. Epub 2023 May 3.

Abstract

The difficulty of releasing nutrients from soils in karst areas limits the yield of local crops and leads to poverty. In this study, two strains of plant growth-promoting rhizobacteria (PGPR) were isolated from the rhizosphere soil of typical plants in karst areas, which were both identified as Bacillus sp. and named GS1 and N1. And two isolates were used to construct a composite PGPR named MC1. These three strains of PGPR were used for soil inoculation in the pot experiment and field trial and their capacity to promote rice development was assessed. The results showed that MC1 inoculation exhibited notable rice growth-promoting ability in pot experiments, and, respectively, had an increment of 16.96, 18.74, and 11.50% in shoot biomass, total biomass, and rice height compared with control. This is largely attributed to PGPR's capacity to secrete phytohormones and soil enzymes, particularly urease (UE) in GS1, whose secreted UE content was significantly higher by 12.18% compared to the control. When applied to the field, MC1 inoculation not only increased rice yield by 8.52% and the available nutrient content in rice rhizosphere soil, such as available phosphorus (AP) and exchangeable magnesium (EMg); but also improved the abundance of beneficial rhizobacteria and the diversity of microbial communities in rice rhizosphere soil. Results in this study revealed that inoculated PGPR played a major role in promoting rice growth and development, and a new strategy for facilitating the growth of rice crops in agriculture was elucidated.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-023-03593-0.

Keywords: Growth-promoting; Karst area; PGPR; Rice.