Attentional focus effects on joint covariation in a reaching task

Hum Mov Sci. 2023 Jun:89:103089. doi: 10.1016/j.humov.2023.103089. Epub 2023 May 5.

Abstract

Adopting an external focus of attention (EF) has been found beneficial over internal focus (IF) for performing motor skills. Previous studies primarily examined focus of attention (FOA) effects on performance outcomes (such as error and accuracy), with relatively less emphasis on movement coordination. Given that human movements are kinematically and kinetically abundant (Gefland & Latash, 1998), FOA instructions may change how motor abundance is utilized by the CNS. This study applied the uncontrolled manifold analysis (UCM) to address this question in a reaching task. Healthy young adults (N = 38; 22 ± 1 yr; 7 men, 31 women) performed planar reaching movements to a target using either the dominant or nondominant arm under two different FOA instructions: EF and IF. Reaching was performed without online visual feedback and at a preferred pace. Joint angles of the clavicle-scapula, shoulder, elbow, and wrist were recorded, and their covariation for controlling dowel endpoint position was analyzed via UCM. As expected, IF led to a higher mean radial error than EF, driven by increases in aiming bias and variability. Consistent with this result, the UCM analysis showed that IF led to higher goal-relevant variance among the joints (VORT) compared to EF starting from the first 20% of the reach to the end. However, the goal-irrelevant variance (VUCM)-index of joint variance that does not affect the end-effector position-did not show FOA effects. The index of stability of joint coordination with respect to endpoint position (ΔV) was also not different between the EF and IF. Consistent with the constrained action hypothesis, these results provide evidence that IF disrupted goal-relevant joint covariation starting in the early phases of the reach without affecting goal-irrelevant coordination.

Keywords: Attentional focus; Movement variability; Reaching; Uncontrolled manifold.

MeSH terms

  • Attention
  • Biomechanical Phenomena
  • Elbow Joint*
  • Female
  • Humans
  • Male
  • Movement
  • Psychomotor Performance
  • Shoulder
  • Upper Extremity
  • Young Adult