Heterogeneous distribution of Cardinium in whitefly populations is associated with host nuclear genetic background

Insect Sci. 2023 Dec;30(6):1701-1712. doi: 10.1111/1744-7917.13199. Epub 2023 May 5.

Abstract

Inherited bacterial symbionts are very common in arthropods, but infection frequency can vary widely among populations. Experiments and interpopulation comparisons suggest that host genetic background might be important in explaining this variation. Our extensive field investigation showed that the infection pattern of the facultative symbiont Cardinium was heterogeneous across geographical populations of the invasive whitefly Bemisia tabaci Mediterranean (MED) in China, with genetic nuclear differences evident in 2 of the populations: 1 with a low infection rate (SD line) and 1 with a high infection rate (HaN line). However, whether the heterogeneous frequency of Cardinium is associated with the host genetic background remains poorly understood. Here, we compared the fitness of the Cardinium-infected and uninfected sublines with similar nuclear genetic backgrounds from SD and HaN lines, respectively, and further determine whether host extranuclear or nuclear genotype influenced the Cardinium-host phenotype by performing 2 new introgression series of 6 generations between SD and HaN lines (i.e., Cardinium-infected females of SD were backcrossed with uninfected males of HaN, and vice versa). The results showed that Cardinium provides marginal fitness benefits in the SD line, whereas Cardinium provides strong fitness benefits in the HaN line. Further, both Cardinium and the Cardinium-host nuclear interaction influence the fecundity and pre-adult survival rate of B. tabaci, whereas the extranuclear genotype does not. In conclusion, our results provide evidence that Cardinium-mediated fitness effects were closely associated with the host genetic background, which provides a fundamental basis for understanding the mechanism underlying the heterogeneous distribution of Cardinium in B. tabaci MED populations across China.

Keywords: Bemisia tabaci; Cardinium; heterogeneity; infection frequency; nuclear genotype.

MeSH terms

  • Animals
  • Bacteroidetes
  • Female
  • Fertility / genetics
  • Hemiptera* / genetics
  • Hemiptera* / microbiology
  • Male
  • Rickettsia*
  • Symbiosis