High-mobility group box 1 (HMGB1) crosses the BBB bidirectionally

Brain Behav Immun. 2023 Jul:111:386-394. doi: 10.1016/j.bbi.2023.04.018. Epub 2023 May 3.

Abstract

High-mobility group box 1 (HMGB1) is a ubiquitous protein that regulates transcription in the nucleus, and is an endogenous damage-associated molecular pattern molecule that activates the innate immune system. HMGB1 activates the TLR4 and RAGE recepto, inducing downstream signals reminiscent of cytokines that have been found to cross the blood-brain barrier (BBB). Blood HMGB1 increases in stroke, sepsis, senescence, alcohol binge drinking and other conditions. Here, we examined the ability of HMGB1 radioactively labeled with iodine (I-HMGB1) to cross the BBB. We found that I-HMGB1 readily entered into mouse brain from the circulation with a unidirectional influx rate of 0.654 μl/g-min. All brain regions tested took up I-HMGB1; uptake was greatest by the olfactory bulb and least in the striatum. Transport was not reliably inhibited by unlabeled HMGB1 nor by inhibitors of TLR4, TLR2, RAGE, or CXCR4. Uptake was enhanced by co-injection of wheatgerm agglutinin, suggestive of involvement of absorptive transcytosis as a mechanism of transport. Induction of inflammation/neuroinflammation with lipopolysaccharide is known to increase blood HMGB1; we report here that brain transport is also increased by LPS-induced inflammation. Finally, we found that I-HMGB1 was also transported in the brain-to-blood direction, with both unlabeled HMGB1 or lipopolysaccharide increasing the transport rate. These results show that HMGB1 can bidirectionally cross the BBB and that those transport rates are enhanced by inflammation. Such transport provides a mechanism by which HMGB1 levels would impact neuroimmune signaling in both the brain and periphery.

Keywords: Blood-brain barrier; Cytokine, innate immunity, lipopolysaccharide; High-mobility group box 1; Inflammation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Blood-Brain Barrier* / metabolism
  • HMGB1 Protein* / metabolism
  • Inflammation
  • Lipopolysaccharides
  • Mice
  • Toll-Like Receptor 4 / metabolism

Substances

  • HMGB1 Protein
  • Lipopolysaccharides
  • Toll-Like Receptor 4