Database Construction of Two-Dimensional Charged Building Blocks for Functional-Oriented Material Design

Nano Lett. 2023 May 24;23(10):4634-4641. doi: 10.1021/acs.nanolett.3c01237. Epub 2023 May 5.

Abstract

Databases for charge-neutral two-dimensional (2D) building blocks (BBs), i.e., 2D materials, have been built for years due to their applications in nanoelectronics. Though lots of solids are constructed from charged 2DBBs, a database for them is still missing. Here, we identify 1028 charged 2DBBs from Materials Project database using a topological-scaling algorithm. These BBs host versatile functionalities including superconductivity, magnetism, and topological properties. We construct layered materials by assembling these BBs considering valence state and lattice mismatch and predict 353 stable layered materials by high-throughput density functional theory calculations. These materials can not only inherit their functionalities but also show enhanced/emergent properties compared with their parent materials: CaAlSiF displays superconducting transition temperature higher than NaAlSi; Na2CuIO6 shows bipolar ferromagnetic semiconductivity and anomalous valley Hall effect that are absent in KCuIO6; LaRhGeO possesses nontrivial band topology. This database expands the design space of functional materials for fundamental research and potential applications.

Keywords: charged building block database; density functional theory; ferromagnetic semiconductor; functional-oriented materials design; superconductivity; topological material.