Implications of land use/land cover dynamics on urban water quality: Case of Addis Ababa city, Ethiopia

Heliyon. 2023 Apr 22;9(5):e15665. doi: 10.1016/j.heliyon.2023.e15665. eCollection 2023 May.

Abstract

Water resources are often at the center of urban development but, as the city expands, the environmental pressure on its water resources increases. Therefore, in this study, we looked into how various land uses and changes in land cover affect the water quality in Addis Ababa, Ethiopia. Land use and land cover change maps were generated from 1991 to 2021 at intervals of five years. On the basis of the weighted arithmetic water quality index approach, the water quality for the same years was likewise divided into five classes. The relationship between land use/land cover dynamics and water quality was then evaluated using correlations, multiple linear regressions, and principal component analysis. According to the computed water quality index, the water quality decreased from 65.34 in 1991 to 246.76 in 2021. The built-up area showed an increase of over 338%, whereas the amount of water decreased by over 61%. While barren land exhibited a negative correlation with nitrates, ammonia loadings, total alkalinity, and total hardness of the water, agriculture and built-up areas positively correlated with water quality parameters such as nutrient loading, turbidity, total alkalinity, and total hardness. A principal component analysis revealed that built up areas and changes in vegetated areas have the biggest impact on water quality. These findings suggest that land use and land cover modifications are involved in the deterioration of water quality around the city. This study will offer information that might help reduce the dangers to aquatic life in urbanized environments.

Keywords: Addis Ababa; Land use/land cover change detection; Remote sensing; Urbanization; Water quality.