Allosteric modulation of integral protein activity by differential stress in asymmetric membranes

PNAS Nexus. 2023 Apr 11;2(5):pgad126. doi: 10.1093/pnasnexus/pgad126. eCollection 2023 May.

Abstract

The activity of integral membrane proteins is tightly coupled to the properties of the surrounding lipid matrix. In particular, transbilayer asymmetry, a hallmark of all plasma membranes, might be exploited to control membrane-protein activity. Here, we hypothesized that the membrane-embedded enzyme outer membrane phospholipase A (OmpLA) is susceptible to the lateral pressure differences that build up between such asymmetric membrane leaflets. Upon reconstituting OmpLA into synthetic, chemically well-defined phospholipid bilayers exhibiting different lateral pressure profiles, we indeed observed a substantial decrease in the enzyme's hydrolytic activity with increasing membrane asymmetry. No such effects were observed in symmetric mixtures of the same lipids. To quantitatively rationalize how the differential stress in asymmetric lipid bilayers inhibits OmpLA, we developed a simple allosteric model within the lateral pressure framework. Thus, we find that membrane asymmetry can serve as the dominant factor in controlling membrane-protein activity, even in the absence of specific, chemical cues or other physical membrane determinants such as hydrophobic mismatch.

Keywords: lateral pressure profile; lipid–protein interactions; phospholipase.