KMT2D Deficiency Promotes Myeloid Leukemias which Is Vulnerable to Ribosome Biogenesis Inhibition

Adv Sci (Weinh). 2023 Jul;10(19):e2206098. doi: 10.1002/advs.202206098. Epub 2023 May 4.

Abstract

KMT2C and KMT2D are the most frequently mutated epigenetic genes in human cancers. While KMT2C is identified as a tumor suppressor in acute myeloid leukemia (AML), the role of KMT2D remains unclear in this disease, though its loss promotes B cell lymphoma and various solid cancers. Here, it is reported that KMT2D is downregulated or mutated in AML and its deficiency, through shRNA knockdown or CRISPR/Cas9 editing, accelerates leukemogenesis in mice. Hematopoietic stem and progenitor cells and AML cells with Kmt2d loss have significantly enhanced ribosome biogenesis and consistently, enlarged nucleolus, increased rRNA and protein synthesis rates. Mechanistically, it is found that KMT2D deficiency leads to the activation of the mTOR pathway in both mouse and human AML cells. Kmt2d directly regulates the expression of Ddit4, a negative regulator of the mTOR pathway. Consistent with the abnormal ribosome biogenesis, it is shown that CX-5461, an inhibitor of RNA polymerase I, significantly restrains the growth of AML with Kmt2d loss in vivo and extends the survival of leukemic mice. These studies validate KMT2D as a de facto tumor suppressor in AML and reveal an unprecedented vulnerability to ribosome biogenesis inhibition.

Keywords: KMT2D; acute myeloid leukemia; epigenetics; mTOR; ribosome biogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Genes, Tumor Suppressor
  • Humans
  • Leukemia, Myeloid, Acute* / metabolism
  • Mice
  • RNA, Small Interfering / metabolism
  • Ribosomes / genetics
  • Ribosomes / metabolism
  • Ribosomes / pathology
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • TOR Serine-Threonine Kinases
  • RNA, Small Interfering