Exercise with a wearable hip-assist robot improved physical function and walking efficiency in older adults

Sci Rep. 2023 May 4;13(1):7269. doi: 10.1038/s41598-023-32335-8.

Abstract

Wearable assistive robotics has emerged as a promising technology to supplement or replace motor functions and to retrain people recovering from an injury or living with reduced mobility. We developed delayed output feedback control for a wearable hip-assistive robot, the EX1, to provide gait assistance. Our purpose in this study was to investigate the effects of long-term exercise with EX1 on gait, physical function, and cardiopulmonary metabolic energy efficiency in elderly people. This study used parallel experimental (exercise with EX1) and control groups (exercise without EX1). A total of 60 community-dwelling elderly persons participated in 18 exercise intervention sessions during 6 weeks, and all participants were assessed at 5 time points: before exercise, after 9 exercise sessions, after 18 sessions, and 1 month and 3 months after the last session. The spatiotemporal gait parameters, kinematics, kinetics, and muscle strength of the trunk and lower extremities improved more after exercise with EX1 than in that without EX1. Furthermore, the effort of muscles over the trunk and lower extremities throughout the total gait cycle (100%) significantly decreased after exercise with EX1. The net metabolic energy costs during walking significantly improved, and functional assessment scores improved more in the experimental group than in the control group. Our findings provide evidence supporting the application of EX1 in physical activity and gait exercise is effective to improve age-related declines in gait, physical function, and cardiopulmonary metabolic efficiency among older adults.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Exercise / physiology
  • Exercise Therapy
  • Gait / physiology
  • Humans
  • Robotics*
  • Walking / physiology
  • Wearable Electronic Devices*