An integrated risk assessment framework using information theory-based coupling methods for basin-scale water quality management: A case study in the Danjiangkou Reservoir Basin, China

Sci Total Environ. 2023 Aug 1:884:163731. doi: 10.1016/j.scitotenv.2023.163731. Epub 2023 May 2.

Abstract

As the second largest reservoir in China, the Danjiangkou Reservoir (DJKR) serves as the water source of the Middle Route of the South-to-North Water Diversion Project of China (MRSNWDPC), i.e., the currently longest (1273 km) inter-basin water diversion project in the world, for more than eight years. The water quality status of the DJKR basin has been receiving worldwide attention because it is related to the health and safety of >100 million people and the integrity of an ecosystem covering >92,500 km2. In this study, basin-scale water quality sampling campaigns were conducted monthly at 47 monitoring sites in river systems of the DJKRB from the year 2020 to 2022, covering nine water quality indicators, i.e., water temperature (WT), pH, dissolved oxygen (DO), permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), ammonia nitrogen (NH3-N), total phosphorus (TP), total nitrogen (TN), and fluoride (F-). The water quality index (WQI) and multivariate statistical techniques were introduced to comprehensively evaluate water quality status and understand the corresponding driving factors of water quality variations. An integrated risk assessment framework simultaneously considered intra and inter-regional factors using information theory-based and the SPA (Set-Pair Analysis) methods were proposed for basin-scale water quality management. The results showed that the water quality of the DJKR and its tributaries stably maintained a "good" status, with all the average WQIs >60 of river systems during the monitoring period. The spatial variations of all WQIs in the basin showed significantly different (Kruskal-Wallis tests, P < 0.01), while no seasonal differences were found. The increase in built-up land use and agricultural water consumption revealed the highest contributions (Mantel's r > 0.5, P < 0.05) to the rise of nutrient loadings of all river systems, showing the intensive anthropogenic activities can eclipse the power of natural processes on water quality variations to some extent. The risks of specific sub-basins that may cause water quality degradation on the MRSNWDPC were effectively quantified and identified into five classifications based on transfer entropy and the SPA methods. This study provides an informative risk assessment framework that was relatively easy to be applied by professionals and non-experts for basin-scale water quality management, thus providing a valuable and reliable reference for the administrative department to conduct effective pollution control in the future.

Keywords: Information theory; Multivariate statistical techniques; Set-pair analysis; Water quality index; Water quality variations.

MeSH terms

  • China
  • Ecosystem
  • Environmental Monitoring / methods
  • Humans
  • Information Theory
  • Nitrogen / analysis
  • Phosphorus / analysis
  • Risk Assessment
  • Rivers
  • Water Pollutants, Chemical* / analysis
  • Water Quality*

Substances

  • Water Pollutants, Chemical
  • Phosphorus
  • Nitrogen