A systematic review on the association between exposure to air particulate matter during pregnancy and the development of hypertensive disorders of pregnancy and gestational diabetes mellitus

Rev Environ Health. 2023 May 4. doi: 10.1515/reveh-2022-0258. Online ahead of print.

Abstract

Particulate matter (PM) is considered an intrauterine toxin that can cross the blood-placental barrier and circulate in fetal blood, affecting fetal development, and implicating placental and intrauterine inflammation, and oxidative damage. However, the relationship between PM exposure and adverse pregnancy outcomes is still unclear and our aim was to systematically review toxicological evidence on the link between PM exposure during pregnancy and the development of gestational diabetes mellitus or hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia. PubMed and Science Direct were searched until January 2022. Of the 204 studies identified, 168 were excluded. The remaining articles were assessed in full-text, and after evaluation, 27 were included in the review. Most of the studies showed an association between PM exposure and gestational hypertension, systolic and diastolic blood pressure, pre-eclampsia, and gestational diabetes mellitus. These results should be interpreted with caution due to the heterogeneity of baseline concentrations, which ranged from 3.3 μg/m3 to 85.9 μg/m3 and from 21.8 μg/m3 to 92.2 μg/m3, respectively for PM2.5 and PM10. Moreover, critical exposure periods were not consistent among studies, with five out of ten observational studies reporting the second trimester as the critical period for hypertensive disorders of pregnancy, and ten out of twelve observational studies reporting the first or second trimester as the critical period for gestational diabetes mellitus. Overall, the findings support an association between PM exposure during pregnancy and adverse pregnancy outcomes, highlighting the need for further research to identify the critical exposure periods and underlying mechanisms.

Keywords: epidemiological studies; gestational diabetes mellitus; hypertension disorders; in vivo studies; particulate matter; pregnancy.

Publication types

  • Review