Methane Carboxylation Using Electrochemically Activated Carbon Dioxide

Angew Chem Int Ed Engl. 2023 Jul 3;62(27):e202305568. doi: 10.1002/anie.202305568. Epub 2023 May 19.

Abstract

Direct synthesis of CH3 COOH from CH4 and CO2 is an appealing approach for the utilization of two potent greenhouse gases that are notoriously difficult to activate. In this Communication, we report an integrated route to enable this reaction. Recognizing the thermodynamic stability of CO2 , our strategy sought to first activate CO2 to produce CO (through electrochemical CO2 reduction) and O2 (through water oxidation), followed by oxidative CH4 carbonylation catalyzed by Rh single atom catalysts supported on zeolite. The net result was CH4 carboxylation with 100 % atom economy. CH3 COOH was obtained at a high selectivity (>80 %) and good yield (ca. 3.2 mmol g-1 cat in 3 h). Isotope labelling experiments confirmed that CH3 COOH is produced through the coupling of CH4 and CO2 . This work represents the first successful integration of CO/O2 production with oxidative carbonylation reaction. The result is expected to inspire more carboxylation reactions utilizing preactivated CO2 that take advantage of both products from the reduction and oxidation processes, thus achieving high atom efficiency in the synthesis.

Keywords: Acetic Acid Synthesis; CO2 Utilization; Catalysis; Electrochemistry; Methane Carboxylation.