Silicate Nanoplatelets Promotes Neuronal Differentiation of Neural Stem Cells and Restoration of Spinal Cord Injury

Adv Healthc Mater. 2023 Jul;12(19):e2203051. doi: 10.1002/adhm.202203051. Epub 2023 May 17.

Abstract

Neural stem cell (NSC) transplantation has been suggested as a promising therapeutic strategy to replace lost neurons after spinal cord injury (SCI). However, the low survival rate and neuronal differentiation efficiency of implanted NSCs within the lesion cavity limit the application. Furthermore, it is difficult for transplanted cells to form connections with host cells. Thus, effective and feasible methods to enhance the efficacy of cell transplantation are needed. In this study, the effect of Laponite nanoplatelets, a type of silicate nanoplatelets, on stem cell therapy is explored. Laponite nanoplatelets can induce the neuronal differentiation of NSCs in vitro within five days, and RNA sequencing and protein expression analysis demonstrated that the NF-κB pathway is involved in this process. Moreover, histological results revealed that Laponite nanoplatelets can increase the survival rate of transplanted NSCs and promote NSCs to differentiate into mature neurons. Finally, the formation of connections between transplanted cells and host cells is confirmed by axon tracing. Hence, Laponite nanoplatelets, which drove neuronal differentiation and the maturation of NSCs both in vitro and in vivo, can be considered a convenient and practical biomaterial to promote repair of the injured spinal cord by enhancing the efficacy of NSC transplantation.

Keywords: differentiation; laponite; neural stem cells; spinal cord injury; stem cell therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation
  • Humans
  • Neural Stem Cells*
  • Silicates / pharmacology
  • Spinal Cord / pathology
  • Spinal Cord Injuries* / pathology
  • Spinal Cord Injuries* / therapy
  • Stem Cell Transplantation / methods

Substances

  • laponite
  • Silicates