High-Speed Stimulated Raman Scattering Microscopy Using Inertia-Free AOD Scanning

J Phys Chem B. 2023 May 18;127(19):4229-4234. doi: 10.1021/acs.jpcb.2c09114. Epub 2023 May 4.

Abstract

High-throughput stimulated Raman scattering (SRS) microscopy is highly desired for large tissue imaging with chemical specificity. However, the mapping speed remains as the major short board of conventional SRS, primarily owing to the mechanical inertia existing in galvanometers or other laser scanning alternatives. Here, we developed inertia-free acousto-optic deflector (AOD)-based high-speed large-field stimulated Raman scattering microscopy, in which both the speed and integration time are ensured by immune of the mechanical response time. To avoid laser beam distortion induced by the intrinsic spatial dispersion of AODs, two spectral compression systems are implemented to compress the broad-band femtosecond pulse to picosecond laser. We achieved an SRS imaging of a 12 × 8 mm2 mouse brain slice in only 8 min at an image resolution of approximately 1 μm and 32 slices from a whole brain in 12 h. The AOD-based inertia-free SRS mapping can be much faster after further upgrading and allow broad-spectrum applications of chemical imaging in the future.