Ultrasmall Superparamagnetic Iron Oxide Nanoparticles as Nanocarriers for Magnetic Resonance Imaging: Development and In Vivo Characterization

ACS Appl Nano Mater. 2022 Jul 22;5(7):9625-9632. doi: 10.1021/acsanm.2c01835. Epub 2022 Jun 30.

Abstract

Ultrasmall superparamagnetic iron oxide nanoparticles (uSPIOs) are attractive platforms for the development of smart contrast agents for magnetic resonance imaging (MRI). Oleic acid-capped uSPIOs are commercially available yet hydrophobic, hindering in vivo applications. A hydrophilic ligand with high affinity toward uSPIO surfaces can render uSPIOs water-soluble, biocompatible, and highly stable under physiological conditions. A small overall hydrodynamic diameter ensures optimal pharmacokinetics, tumor delivery profiles, and, of particular interest, enhanced T 1 MR contrasts. In this study, for the first time, we synthesized a ligand that not only fulfills the as-proposed properties but also provides multiple reactive groups for further modifications. The synthesis delivers a facile approach using commercially available reactants, with resultant uSPIO-ligand constructs assembled through a single-step ligand exchange process. Structural and molecular size analyses confirmed size uniformity and small hydrodynamic diameter of the constructs. On average, 43 reactive amine groups were present per uSPIO nanoparticle. Its r 1 relaxivity has been tested on a 7 Tesla MR instrument and is comparable to that of the clinically available T 1 gadolinium-based contrast agent GBCA (1 vs 3 mM-1 s-1, respectively). A significant decrease in tumor T1 (15%) within 1 h of injection and complete signal recovery after 2 h were detected with a dose of 7 μg Fe/g mouse. The agent also has high r 2 relaxivity and can be used for T 2 contrast-enhanced MRI. Taken together, good relaxation and delivery properties and the presence of multiple surface reactive groups can facilitate its application as a universal MRI-compatible nanocarrier platform.

Keywords: MRI; T1-/T2-weighed imaging; click chemistry; contrast agent; ligand exchange; preclinical cancer models; uSPIO.