Lipid-based nanoformulation optimization for achieving cutaneous targeting: Niosomes as the potential candidates to fulfill this aim

Eur J Pharm Sci. 2023 Jul 1:186:106458. doi: 10.1016/j.ejps.2023.106458. Epub 2023 May 1.

Abstract

The present study screened the utility of topically-applied nanoformulations to target the drugs/actives into the skin reservoir with the reduction of possible systemic absorption. The lipid-based nanoformulations selected in this study included solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanoemulsions (NEs), liposomes, and niosomes. We loaded flavanone and retinoic acid (RA) as the penetrants. The prepared nanoformulations were assessed for their average diameter, polydispersity index (PDI), and zeta potential. An in vitro permeation test (IVPT) was utilized to determine the skin delivery into/across pig skin, atopic dermatitis (AD)-like mouse skin, and photoaged mouse skin. We found an increased skin absorption of lipid nanoparticles following the increase of solid lipid percentage in the formulations (SLNs > NLCs > NEs). The use of liposomes even reduced the dermal/transdermal selectivity (S value) to lessen the cutaneous targeting. The niosomes resulted in significantly greater RA deposition and reduced permeation in the Franz cell receptor compared to the other nanoformulations. The S value of the RA delivery via stripped skin was increased by 26-fold in the niosomes compared to the free RA. The dye-labeled niosomes displayed a strong fluorescence in the epidermis and upper dermis through the visualization of fluorescence and confocal microscopies. The cyanoacrylate skin biopsy manifested greater hair follicle uptake of the niosomes compared to the free penetrants by 1.5 to three-fold. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay indicated an increase in antioxidant ability from 55% to 75% after flavanone entrapment in the niosomes. In the activated keratinocytes, the niosomal flavanone could suppress the overexpressed CCL5 to the baseline control because of the facile cell internalization. After the formulation optimization, the niosomes with higher phospholipid amount had a superior effect in delivering penetrants into the skin reservoir, with limited permeation to the receptors.

Keywords: Anti-inflammatory activity; Nanoformulation; Niosome; Skin delivery; Skin targeting.

MeSH terms

  • Administration, Cutaneous
  • Animals
  • Drug Carriers / metabolism
  • Lipids
  • Liposomes* / metabolism
  • Mice
  • Skin / metabolism
  • Skin Absorption*
  • Swine
  • Tretinoin

Substances

  • Liposomes
  • Tretinoin
  • Lipids
  • Drug Carriers