Transuncal Selective Amygdalohippocampectomy by an Inferolateral Preseptal Endoscopic Approach Through Inferior Eyelid Conjunctival Incision: An Anatomic Study

Oper Neurosurg (Hagerstown). 2023 Aug 1;25(2):199-208. doi: 10.1227/ons.0000000000000728. Epub 2023 May 3.

Abstract

Background: Transorbital endoscopic approaches have been described for pathologies of anterior and middle fossae. Standard lateral orbitotomy gives access to mesial temporal lobe, but the axis of work is partially obscured by the temporal pole and working corridor is limited.

Objective: To evaluate the usefulness of an inferolateral orbitotomy to provide a more direct corridor to perform a transuncal selective amygdalohippocampectomy.

Methods: Three adult cadaveric specimens were used for a total of 6 dissections. A step-by-step description and illustration of the transuncal corridor for a selective amygdalohippocampectomy were performed using the inferolateral orbitotomy through an inferior eyelid conjunctival incision. The anatomic landmarks were demonstrated in detail. Orbitotomies and angles of work were measured from computed tomography scans, and the area of resection was illustrated by postdissection MRI.

Results: Inferior eyelid conjunctival incision was made for exposure of the inferior orbital rim. Inferolateral transorbital approach was performed to access the transuncal corridor. Endoscopic selective amygdalohippocampectomy was performed through the entorhinal cortex without damage to the temporal neocortex or Meyer's loop. The mean horizontal diameter of the osteotomy was 14.4 mm, and the vertical one was 13.6 mm. The mean angles of work were 65° and 35.5° in the axial and sagittal planes, respectively. Complete amygdalohippocampectomy was achieved in all 6 dissections.

Conclusion: Transuncal selective amygdalohippocampectomy was feasible in cadaveric specimens using the inferolateral transorbital endoscopic approach avoiding damage to the temporal neocortex and Meyer's loop. The inferior eyelid conjunctival incision may result in an excellent cosmetic outcome.

MeSH terms

  • Adult
  • Cadaver
  • Endoscopy / methods
  • Eyelids / surgery
  • Humans
  • Neurosurgical Procedures* / methods
  • Temporal Lobe* / surgery