New Tiaoxin Recipe alleviates energy metabolism disorders in an APPswe/PS1DE9 mouse model of Alzheimer's disease

Comb Chem High Throughput Screen. 2023 Apr 28. doi: 10.2174/1386207326666230428112358. Online ahead of print.

Abstract

Background: Alzheimer's disease (AD) is a typical neurodegenerative disease with a complex etiology. Until now, there has been no effective treatment available for AD; however, improving energy dysmetabolism, the key pathological event in the early stage of AD, can effectively delay the progression of AD.

Objective: This paper aims to investigate the therapeutic effect and potential mechanism of the new Tiaoxin recipe on early AD.

Methods: APP/PS1 mice were divided into a model group, a new Tiaoxin recipe group, and a donepezil group, and C57/BL mice were used for the control group. Mouse cognitive and learning abilities were tested using the Morris water maze test and a new object-recognition experiment. The 42 amino acid form of amyloid β peptide (Aβ1-42) content was detected by enzyme-linked immunosorbent assay, the senile plaque area was detected by thioflavin S staining, and the senescence-associated β-galactosidase (SA-β-gal)-positive area was detected by chemical staining. Also, the adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+), and nicotinamide adenine dinucleotide hydride (NADH) contents were detected using a biochemical method, and the cluster of differentiation 38 (CD38) and silent mating-type information regulation 2 homolog 3 (SIRT3) protein expression levels were detected by immunofluorescence and Western blot analysis.

Results: Compared with those of the control group, the learning and memory abilities of the model group were impaired; the senile plaque deposition, Aβ1-42 content, and SA-βgal-positive staining area were increased; the ATP concentration, NAD+ concentration, and NAD+/NADH ratio were decreased; the CD38 protein expression level was increased; and the SIRT3 protein expression level was decreased. Following intervention with the new Tiaoxin recipe, the learning and memory abilities were improved; the senile plaque deposition, Aβ1-42 content, and SA-βgal-positive area were reduced; the ATP concentration, NAD+ concentration, and NAD+/NADH ratio were increased; CD38 protein expression was decreased, and SIRT3 protein expression was increased.

Conclusion: This study shows that the new Tiaoxin Recipe can improve cognitive ability and reduce the Aβ1-42 content and senile plaque deposition in APP/PS1 mice, which may occur through the downregulation of CD38 protein expression, upregulation of SIRT3 protein expression, restoration of the NAD+ level, promotion of ATP synthesis, mitigation of energy metabolism disorders.

Keywords: Alzheimer’s disease; CD38; NAD+; energy dysmetabolism; new Tiaoxin Recipe.