5-ASA can functionally replace Clostridia to prevent a post-antibiotic bloom of Candida albicans by maintaining epithelial hypoxia

bioRxiv [Preprint]. 2023 Apr 19:2023.04.17.537218. doi: 10.1101/2023.04.17.537218.

Abstract

Antibiotic prophylaxis sets the stage for an intestinal bloom of Candida albicans , which can progress to invasive candidiasis in patients with hematologic malignancies. Commensal bacteria can reestablish microbiota-mediated colonization resistance after completion of antibiotic therapy, but they cannot engraft during antibiotic prophylaxis. Here we use a mouse model to provide a proof of concept for an alternative approach, which replaces commensal bacteria functionally with drugs to restore colonization resistance against C. albicans . Streptomycin treatment, which depletes Clostridia from the gut microbiota, disrupted colonization resistance against C. albicans and increased epithelial oxygenation in the large intestine. Inoculating mice with a defined community of commensal Clostridia species reestablished colonization resistance and restored epithelial hypoxia. Notably, these functions of commensal Clostridia species could be replaced functionally with the drug 5-aminosalicylic acid (5-ASA), which activates mitochondrial oxygen consumption in the epithelium of the large intestine. When streptomycin-treated mice received 5-ASA, the drug reestablished colonization resistance against C. albicans and restored physiological hypoxia in the epithelium of the large intestine. We conclude that 5-ASA treatment is a non-biotic intervention that restores colonization resistance against C. albicans without requiring the administration of live bacteria.

Publication types

  • Preprint