Reaction Coordinates for Conformational Transitions Using Linear Discriminant Analysis on Positions

J Chem Theory Comput. 2023 Jul 25;19(14):4427-4435. doi: 10.1021/acs.jctc.3c00051. Epub 2023 May 2.

Abstract

In this work, we demonstrate that Linear Discriminant Analysis (LDA) applied to atomic positions in two different states of a biomolecule produces a good reaction coordinate between those two states. Atomic coordinates of a macromolecule are a direct representation of a macromolecular configuration, and yet, they are not used in enhanced sampling studies due to a lack of rotational and translational invariance. We resolve this issue using the technique of our prior work, whereby a molecular configuration is considered a member of an equivalence class in size-and-shape space, which is the set of all configurations that can be translated and rotated to a single point within a reference multivariate Gaussian distribution characterizing a single molecular state. The reaction coordinates produced by LDA applied to positions are shown to be good reaction coordinates both in terms of characterizing the transition between two states of a system within a long molecular dynamics (MD) simulation and also ones that allow us to readily produce free energy estimates along that reaction coordinate using enhanced sampling MD techniques.