All-Solid-State Rechargeable Air Batteries Using Dihydroxybenzoquinone and Its Polymer as the Negative Electrode

Angew Chem Int Ed Engl. 2023 Jul 24;62(30):e202304366. doi: 10.1002/anie.202304366. Epub 2023 May 16.

Abstract

A proof-of-concept study was conducted on an all-solid-state rechargeable air battery (SSAB) using redox-active 2,5-dihydroxy-1,4-benzoquinone (DHBQ) and its polymer (PDBM) and a proton-conductive polymer (Nafion). DHBQ functioned well in the redox reaction with the solid Nafion ionomer at 0.47 and 0.57 V vs. RHE, similar to that in acid aqueous solution. The resulting air battery exhibited an open circuit voltage of 0.80 V and a discharge capacity of 29.7 mAh gDHBQ -1 at a constant current density (1 mA cm-2 ). With PDBM, the discharge capacity was much higher, 176.1 mAh gPDBM -1 , because of the improved utilization of the redox-active moieties. In the rate characteristics of the SSAB-PDBM, the coulombic efficiency was 84 % at 4 C, which decreased to 66 % at 101 C. In a charge/discharge cycle test, the capacity remaining after 30 cycles was 44 %, which was able to be significantly improved, to 78 %, by tuning the Nafion composition in the negative electrode.

Keywords: Electrochemistry; Hydroxybenzoquinones; Ionomers; Polymer Membranes; Solid-State Air Batteries.