Effects of silylene ligands on the performance of carbonyl hydrosilylation catalyzed by cobalt phosphine complexes

Dalton Trans. 2023 May 22;52(20):6712-6721. doi: 10.1039/d3dt00372h.

Abstract

In order to study the effects of silylene ligands on the catalytic activity of carbonyl hydrosilylation catalyzed by cobalt phosphine complexes, readily available model catalysts are required. In this contribution, a comparative study of the hydrosilylation of aldehydes and ketones catalyzed by tris(trimethylphosphine) cobalt chloride, CoCl(PMe3)3 (1), and bis(silylene) cobalt chloride, Co(LSi:)2(PMe3)2Cl (2, LSi: = {PhC(NtBu)2}SiCl), is presented. It was found that both complexes 1 and 2 are good catalysts for the hydrosilylation of aldehydes and ketones under mild conditions. This catalytic system has a broad substrate scope and selectivity for multi-functional substrates. Silylene complex 2 shows higher activity than complex 1, bearing phosphine ligands, for aldehydes, but conversely, for ketones, the activity of complex 1 is higher than that of complex 2. It is worth noting that in the process of mechanistic studies the intermediates (PMe3)3Co(H)(Cl)(PhH2Si) (3) and (LSi:)2(PMe3)Co(H)(Cl)(PhH2Si) (4) were isolated from the stoichiometric reactions of 1 and 2 with phenylsilane, respectively. Further experiments confirmed that complex 3 is a real intermediate. A possible catalytic mechanism for the hydrosilylation of carbonyl compounds catalyzed by 1 was proposed based on the experimental investigation and literature reports, and this mechanism was further supported by DFT studies. The bis(silylene) complex 4 showed complicated behavior in solution. A series of experiments were designed to study the catalytic mechanism for the hydrosilylation of carbonyl compounds catalyzed by complex 2. According to the experimental results, the hydrosilylation of aldehydes catalyzed by 1 proceeds via a different mechanism than that of the analogous reaction with complex 2 as the catalyst. In the case of ketones, complex 4 is a real intermediate, indicating that both 1 and 2 catalyze the reaction by the same mechanism. The molecular structures of 3 and 4 were determined by single crystal X-ray diffraction analysis.