Enhanced Contact Performance and Thermal Tolerance of Ni/Bi2Te3 Joints for Bi2Te3-Based Thermoelectric Devices

ACS Appl Mater Interfaces. 2023 May 10;15(18):22705-22713. doi: 10.1021/acsami.3c01904. Epub 2023 May 1.

Abstract

Ni metal has been widely used as a barrier layer in Bi2Te3-based thermoelectric devices, which establishes stable joints to link Bi2Te3-based legs and electrodes. However, the Ni/Bi2Te3 joints become very fragile when the devices were exposed to high temperature, causing severe performance deterioration and even device failure. Herein, stable Ni/Bi2Te3 joints have been established by arc spraying of the Ni barrier layer on the Bi2Te3-based alloys. The interface microstructure and contact performance including the bonding strength and contact resistivity of the arc-sprayed Ni/Bi2Te3 joints are investigated. The results indicate that, as compared with traditional Ni/Bi2Te3 joints, the arc-sprayed Ni/Bi2Te3 joints have comparably low contact resistivity while possessing a 50% higher bonding strength. Aging the joints as an exposure to high-temperature circumstances, the arc-sprayed Ni/Bi2Te3 joints exhibit much better tolerance to the thermal shock with stable bonding strength and contact resistivity. The enhanced interfacial contact performance and thermal tolerance should be attributed to the thick Ni barrier layer and interface reaction layer with good Ohmic contact. This work provides an effective strategy to establish stable joints for the Bi2Te3-based thermoelectric devices with improved thermal stability.

Keywords: barrier layer; bismuth telluride; interfacial contact; thermal stability; thermoelectric device.