Ga-hybridization-mediated broadband optical amplification in Bi-activated photonic glass and fiber

Opt Lett. 2023 May 1;48(9):2457-2460. doi: 10.1364/OL.486647.

Abstract

A Ga hybridization strategy is proposed for simultaneously enhancing the near-infrared activity and extending the bandwidth of Bi-activated photonic glass. Systematic studies on the near-infrared optical responses of Ga/Bi and Al/Bi co-doped silica glasses are performed. It is interesting to note that Ga/Bi co-doped glasses have a similar near-infrared emission center to Al/Bi co-doped glass, while the former is more effective in improving near-infrared activity. The different luminescence mechanisms of Ga/Bi and Al/Bi co-doped silica glasses are elucidated, and the corresponding microstructure-optical response relationship is discussed. In addition, the Ga/Bi co-doped silica optical fiber is successfully prepared, and the principal fiber amplifier device is fabricated. Furthermore, amplified spontaneous emission and broadband on-off gain are realized. The results suggest that Ga-hybridized Bi-activated photonic glass is a promising gain material for broadband fiber amplifiers.