Dynamical Susceptibilities of Confined Water from Room Temperature to the Glass Transition

J Phys Chem Lett. 2023 May 4;14(17):4104-4112. doi: 10.1021/acs.jpclett.3c00580. Epub 2023 Apr 26.

Abstract

We confine water to narrow silica pores, where crystallization is suppressed, and determine the dynamical susceptibilities of the liquid from room temperature down to the glass transition by combining broadband dielectric spectroscopy (BDS) with 1H and 2H nuclear magnetic resonance (NMR), in particular, by establishing NMR field-cycling relaxometry. For the correlation times, derivative analysis reveals Vogel-Fulcher-Tammann and Arrhenius regimes at T ≥ 215 K and T ≤ 160 K, respectively, which are separated by a broad crossover region. The continuous transition in the temperature dependence is accompanied by a gradual change from asymmetric high-temperature shapes of the dynamical susceptibilities to symmetric low-temperature ones and by a steady decrease of the dielectric relaxation strength. In the Arrhenius regime (Ea = 0.48 eV) at T ≤ 160 K, 2D 2H NMR spectra reveal quasi-isotropic water reorientation. We rationalize these results in terms of a crossover to an interface-affected, noncooperative relaxation involving both rotational and translational motions.