The difference between several neuromuscular tests for monitoring resistance-training induced fatigue

J Sports Sci. 2023 Feb;41(3):209-216. doi: 10.1080/02640414.2023.2207852. Epub 2023 May 1.

Abstract

The purposes of this study were to investigate the acute effects of resistance training protocol on kinetic changes in squat jump (SJ), shortened isometric mid-thigh pull (IMTP), and isometric squat (ISQ) and to examine the relationship of dynamic maximum strength with performance changes over 48 hours in resistance-trained individuals. Participants completed performance tests at pre-, post-24 hours, and post-48 hours resistance training protocol (Baseline, Post24, and Post48). The training protocol consisted of 5 sets of 10 repetitions of back squat (BSQ) at 60% of 1 repetition maximum (1RM). SJ variables included jump height (JH), peak power (PP), and relative PP. For the IMTP and ISQ, isometric peak force (IPF), relative IPF, rate of force development at 250 milliseconds (RFD250), and impulse at 250 milliseconds (IMP250) were calculated. Significant decreases were observed from Baseline to Post24 (p = 0.023, Cohen's dz effect size [dz] = 1.00) and Post48 (p = 0.032, dz = 0.94) in SJ JH. IMTP IMP250 significantly decreased from Baseline to Post48 (p = 0.046, dz = 0.88). Significant negative correlation was found between relative 1RM BSQ and the changes from Baseline to Post48 in ISQ RFD250 (p = 0.046,r = -0.61). Acute performance decreases might remain until 48 hours after resistance training in explosive strength and impulse regardless of isometric testing type.

Keywords: Athlete monitoring; maximum strength; rate of force development.

MeSH terms

  • Fatigue
  • Humans
  • Isometric Contraction
  • Muscle Strength
  • Muscle, Skeletal
  • Resistance Training* / methods