Allylic Carbocyclic Inhibitors Covalently Bind Glycoside Hydrolases

JACS Au. 2023 Mar 20;3(4):1151-1161. doi: 10.1021/jacsau.3c00037. eCollection 2023 Apr 24.

Abstract

Allylic cyclitols were investigated as covalent inhibitors of glycoside hydrolases by chemical, enzymatic, proteomic, and computational methods. This approach was inspired by the C7 cyclitol natural product streptol glucoside, which features a potential carbohydrate leaving group in the 4-position (carbohydrate numbering). To test this hypothesis, carbocyclic inhibitors with leaving groups in the 4- and 6- positions were prepared. The results of enzyme kinetics analyses demonstrated that dinitrophenyl ethers covalently inhibit α-glucosidases of the GH13 family without reactivation. The labeled enzyme was studied by proteomics, and the active site residue Asp214 was identified as modified. Additionally, computational studies, including enzyme homology modeling and density functional theory (DFT) calculations, further delineate the electronic and structural requirements for activity. This study demonstrates that previously unexplored 4- and 6-positions can be exploited for successful inhibitor design.