Mock circulatory loop applications for testing cardiovascular assist devices and in vitro studies

Front Physiol. 2023 Apr 13:14:1175919. doi: 10.3389/fphys.2023.1175919. eCollection 2023.

Abstract

The mock circulatory loop (MCL) is an in vitro experimental system that can provide continuous pulsatile flows and simulate different physiological or pathological parameters of the human circulation system. It is of great significance for testing cardiovascular assist device (CAD), which is a type of clinical instrument used to treat cardiovascular disease and alleviate the dilemma of insufficient donor hearts. The MCL installed with different types of CADs can simulate specific conditions of clinical surgery for evaluating the effectiveness and reliability of those CADs under the repeated performance tests and reliability tests. Also, patient-specific cardiovascular models can be employed in the circulation of MCL for targeted pathological study associated with hemodynamics. Therefore, The MCL system has various combinations of different functional units according to its richful applications, which are comprehensively reviewed in the current work. Four types of CADs including prosthetic heart valve (PHV), ventricular assist device (VAD), total artificial heart (TAH) and intra-aortic balloon pump (IABP) applied in MCL experiments are documented and compared in detail. Moreover, MCLs with more complicated structures for achieving advanced functions are further introduced, such as MCL for the pediatric application, MCL with anatomical phantoms and MCL synchronizing multiple circulation systems. By reviewing the constructions and functions of available MCLs, the features of MCLs for different applications are summarized, and directions of developing the MCLs are suggested.

Keywords: cardiovascular assist device; hemodynamics; in vitro experiment; mechanical circulation support; mock circulatory loop.

Publication types

  • Review

Grants and funding

This work was supported by the National Natural Science Foundation of China (Grant No. 12072320).