Bridging the Gap between Charge Storage Site and Transportation Pathway in Molecular-Cage-Based Flexible Electrodes

ACS Cent Sci. 2023 Apr 5;9(4):805-815. doi: 10.1021/acscentsci.3c00027. eCollection 2023 Apr 26.

Abstract

Porous materials have been widely applied for supercapacitors; however, the relationship between the electrochemical behaviors and the spatial structures has rarely been discussed before. Herein, we report a series of porous coordination cage (PCC) flexible supercapacitors with tunable three-dimensional (3D) cavities and redox centers. PCCs exhibit excellent capacitor performances with a superior molecular capacitance of 2510 F mmol-1, high areal capacitances of 250 mF cm-2, and unique cycle stability. The electrochemical behavior of PCCs is dictated by the size, type, and open-close state of the cavities. Both the charge binding site and the charge transportation pathway are unambiguously elucidated for PCC supercapacitors. These findings provide central theoretical support for the "structure-property relationship" for designing powerful electrode materials for flexible energy storage devices.