Degeneracy Removal of Spin Bands in Collinear Antiferromagnets with Non-Interconvertible Spin-Structure Motif Pair

Adv Mater. 2023 Aug;35(31):e2211966. doi: 10.1002/adma.202211966. Epub 2023 Jun 25.

Abstract

Energy bands in antiferromagnets are supposed to be spin degenerate in the absence of spin-orbit coupling (SOC). Recent studies have identified formal symmetry conditions for antiferromagnetic crystals in which this degeneracy can be lifted, spin splitting,even in the vanishing SOC (i.e., non-relativistic) limit. Materials having such symmetries could enable spin-split antiferromagnetic spintronics without the burden of using heavy-atom compounds. However, the symmetry conditions that involve spin and magnetic symmetry are not always effective as practical material selection filters. Furthermore, these symmetry conditions do not readily disclose trends in the magnitude and momentum dependence of the spin-splitting energy. Here, it is shown that the formal symmetry conditions enabling spin-split antiferromagnets can be interpreted in terms of local motif pairs, such as octahedra or tetrahedra, each carrying opposite magnetic moments. Collinear antiferromagnets with such a spin-structure motif pair, whose components interconvert by neither translation nor spatial inversion, will show spin splitting. Such a real-space motif-based approach enables an easy way to identify and design materials (illustrated in real example materials) having spin splitting without the need for SOC, and offers insights into the momentum dependence and magnitude of the spin splitting.

Keywords: collinear antiferromagnets; momentum-dependent spin splitting; spin-structure motifs.