Enhanced Thermoelectric Performance and Low Thermal Conductivity in Cu2GeTe3 with Identified Localized Symmetry Breakdown

Inorg Chem. 2023 May 15;62(19):7273-7282. doi: 10.1021/acs.inorgchem.3c00350. Epub 2023 Apr 28.

Abstract

Highly efficient and eco-friendly thermoelectric generators rely on low-cost and nontoxic semiconductors with high symmetry and ultralow lattice thermal conductivity κL. We report the rational synthesis of the novel cubic (Ag, Se)-doped Cu2GeTe3 semiconductors. A localized symmetry breakdown (LSB) was found in the composition of Cu1.9Ag0.1GeTe1.5Se1.5 (i.e., CAGTS15) with an ultralow κL of 0.37 W/mK at 723 K, the lowest value outperforming all Cu2GeCh3 (Ch = S, Se, and Te). A joint investigation of synchrotron X-ray techniques identifies the LSB embedded into the cubic CAGTS15 host matrix. This LSB is an Ångström-scale orthorhombic symmetry unit, characteristic of multiple bond lengths, large anisotropic atomic displacements, and distinct local chemical coordination of anions. Computational results highlight that such an unusual orthorhombic symmetry demonstrates low-frequency phonon modes, which become softer and more predominant with increasing temperatures. This unconventional LSB promotes bond complexity and phonon scattering, highly beneficial for extraordinarily low lattice thermal conductivity.