Spin-Liquid Insulators Can Be Landau's Fermi Liquids

Phys Rev Lett. 2023 Apr 14;130(15):156702. doi: 10.1103/PhysRevLett.130.156702.

Abstract

The long search for insulating materials that possess low-energy quasiparticles carrying electron's quantum numbers except charge-inspired by the neutral spin-1/2 excitations, the so-called spinons, exhibited by Anderson's resonating-valence-bond state-seems to have reached a turning point after the discovery of several Mott insulators displaying the same thermal and magnetic properties as metals, including quantum oscillations in a magnetic field. Here, we show that such anomalous behavior is not inconsistent with Landau's Fermi liquid theory of quasiparticles at a Luttinger surface. That is the manifold of zeros within the Brillouin zone of the single-particle Green's function at zero frequency, and which thus defines the spinon Fermi surface conjectured by Anderson.