Parabens Increase Sulfamethoxazole-, Tetracycline- and Paraben-Resistant Bacteria and Reshape the Nitrogen/Sulfur Cycle-Associated Microbial Communities in Freshwater River Sediments

Toxics. 2023 Apr 18;11(4):387. doi: 10.3390/toxics11040387.

Abstract

Backgrounds Parabens are pollutants of emerging concern in aquatic environments. Extensive studies regarding the occurrences, fates and behavior of parabens in aquatic environments have been reported. However, little is known about the effects of parabens on microbial communities in freshwater river sediments. This study reveals the effects of methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) on antimicrobial-resistant microbiomes, nitrogen/sulfur cycle-associated microbial communities and xenobiotic degrading microbial communities in freshwater river sediments. Methods The river water and sediments collected from the Wai-shuangh-si Stream in Taipei City, Taiwan were used to construct a model system in fish tanks to test the effects of parabens in laboratory. Results Tetracycline-, sulfamethoxazole- and paraben-resistant bacteria increased in all paraben treated river sediments. The order of the overall ability to produce an increment in sulfamethoxazole-, tetracycline- and paraben-resistant bacteria was MP > EP > PP > BP. The proportions of microbial communities associated with xenobiotic degradation also increased in all paraben-treated sediments. In contrast, penicillin-resistant bacteria in both the aerobic and anaerobic culture of paraben-treated sediments decreased drastically at the early stage of the experiments. The proportions of four microbial communities associated with the nitrogen cycle (anammox, nitrogen fixation, denitrification and dissimilatory nitrate reduction) and sulfur cycle (thiosulfate oxidation) largely increased after the 11th week in all paraben-treated sediments. Moreover, methanogens and methanotrophic bacteria increased in all paraben-treated sediments. In contrast, the nitrification, assimilatory sulfate reduction and sulfate-sulfur assimilation associated to microbial communities in the sediments were decreased by the parabens. The results of this study uncover the potential effects and consequences of parabens on microbial communities in a freshwater river environment.

Keywords: antibiotic-resistant bacteria; freshwater river sediments; microbial communities; paraben-resistant bacteria.

Grants and funding

This research received no external funding.