Learning Representative Features by Deep Attention Network for 3D Point Cloud Registration

Sensors (Basel). 2023 Apr 20;23(8):4123. doi: 10.3390/s23084123.

Abstract

Three-dimensional point cloud registration, which aims to find the transformation that best aligns two point clouds, is a widely studied problem in computer vision with a wide spectrum of applications, such as underground mining. Many learning-based approaches have been developed and have demonstrated their effectiveness for point cloud registration. Particularly, attention-based models have achieved outstanding performance due to the extra contextual information captured by attention mechanisms. To avoid the high computation cost brought by attention mechanisms, an encoder-decoder framework is often employed to hierarchically extract the features where the attention module is only applied in the middle. This leads to the compromised effectiveness of the attention module. To tackle this issue, we propose a novel model with the attention layers embedded in both the encoder and decoder stages. In our model, the self-attentional layers are applied in the encoder to consider the relationship between points inside each point cloud, while the decoder utilizes cross-attentional layers to enrich features with contextual information. Extensive experiments conducted on public datasets prove that our model is able to achieve quality results on a registration task.

Keywords: deep learning; feature extraction; point cloud; registration.

Grants and funding

This research received no external funding.