Study on Dynamic Modulus and Damping Characteristics of Modified Expanded Polystyrene Lightweight Soil under Cyclic Load

Polymers (Basel). 2023 Apr 13;15(8):1865. doi: 10.3390/polym15081865.

Abstract

In recent years, expanded polystyrene (EPS) lightweight soil has been widely used as subgrade in soft soil areas because of its light weight and environmental protection. This study aimed to investigate the dynamic characteristics of sodium silicate modified lime and fly ash treated EPS lightweight soil (SLS) under cyclic loading. The effects of EPS particles on the dynamic elastic modulus (Ed) and damping ratio (λ) of SLS were determined through dynamic triaxial tests at various confining pressures (σ3), amplitudes, and cycle times. Mathematical models of the Ed of the SLS, cycle times, and σ3 were established. The results revealed that the EPS particle content played a decisive role in the Ed and λ of the SLS. The Ed of the SLS decreased with an increase in the EPS particle content (EC). The Ed decreased by 60% in the 1-1.5% range of the EC. The existing forms of lime fly ash soil and EPS particles in the SLS changed from parallel to series. With an increase in σ3 and amplitude, the Ed of the SLS gradually decreased, the λ generally decreased, and the λ variation range was within 0.5%. With an increase in the number of cycles, the Ed of the SLS decreased. The Ed value and the number of cycles satisfied the power function relationship. Additionally, it can be found from the test results that 0.5% to 1% was the best EPS content for SLS in this work. In addition, the dynamic elastic modulus prediction model established in this study can better describe the varying trend of the dynamic elastic modulus of SLS under different σ3 values and load cycles, thereby providing a theoretical reference for the application of SLS in practical road engineering.

Keywords: EPS lightweight soil; damping ratio; dynamic elastic modulus; geosynthetics; series-parallel model.

Grants and funding

This research was funded by National Natural Science Foundation of China (Grant number 41772311) and Zhejiang Province Natural Science Foundation of China (Grant number: LQ20E080005).