Antibacterial and Antibiofilm Efficacy and Mechanism of Ginger (Zingiber officinale) Essential Oil against Shewanella putrefaciens

Plants (Basel). 2023 Apr 20;12(8):1720. doi: 10.3390/plants12081720.

Abstract

Ginger (Zingiber officinale) has unique medicinal value and can be used to treat colds and cold-related diseases. The chemical composition and antibacterial activity of ginger essential oil (GEO) against Shewanella putrefaciens were determined in the present study. Zingiberene, α-curcumene, and zingerone were the main active compounds of GEO. GEO displayed significant antibacterial activity against S. putrefaciens, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 2.0 and 4.0 μL/mL, respectively. Changes in intracellular ATP content, nucleic acid and protein structure, exopolysaccharides (EPS) content, and extracellular protease production indicated that GEO disrupted the membrane integrity of S. putrescens. At the same time, changes in biofilm metabolic activity content and the growth curve of biofilm showed that GEO could destroy the biofilm. Both scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) observations confirmed that GEO destroyed the cell membrane and lead to the leakage of the constituents. The above results indicate that GEO entered the cells via contact with bacterial membranes, and then inhibited the growth of S. putrefaciens and its biofilms by increasing membrane permeability and inhibiting various virulence factors such as EPS. The findings showed that GEO could destroy the structure of cell membrane and biofilm of tested S. putrefaciens, indicating its potential as a natural food preservative.

Keywords: active compounds; antibacterial mechanism; cell membrane destruction; ginger essential oil.