Climate Overrides the Influence of Microsite Conditions on Radial Growth of the Tall Multi-Stemmed Shrub Alnus alnobetula at Treeline

Plants (Basel). 2023 Apr 20;12(8):1708. doi: 10.3390/plants12081708.

Abstract

Green alder (Alnus alnobetula), a tall multi-stemmed deciduous shrub, is widespread at high elevations in the Central European Alps. Its growth form frequently leads to asymmetric radial growth and anomalous growth ring patterns, making development of representative ring-width series a challenge. In order to assess the variability among radii of one shoot, among shoots belonging to one stock and among stocks, 60 stem discs were sampled at treeline on Mt. Patscherkofel (Tyrol, Austria). Annual increments were measured along 188 radii and analyzed in terms of their variability by applying dendrochronological techniques. Results revealed a high agreement in ring-width variation among radii of one shoot, among shoots of one stock and largely among stocks from different sites, confirming the pronounced limitation of radial stem growth by climate forcing at the alpine treeline. In contrast to this, a high variability in both absolute growth rates and long-term growth trends was found, which we attribute to different microsite conditions and disturbances. These factors also override climate control of radial growth under growth-limiting environmental conditions. Based on our findings we provide recommendations for the number of samples needed to carry out inter- and intra-annual studies of radial growth in this multi-stemmed clonal shrub.

Keywords: climate forcing; green alder; growth variability; multi-stemmed shrub; radial stem growth; ring width; tree ring.