Effects of Simulated In Vitro Digestion on the Structural Characteristics, Inhibitory Activity on α-Glucosidase, and Fermentation Behaviours of a Polysaccharide from Anemarrhena asphodeloides Bunge

Nutrients. 2023 Apr 19;15(8):1965. doi: 10.3390/nu15081965.

Abstract

The purpose of this study is to investigate the effects of the simulated saliva-gastrointestinal digestion of AABP-2B on its structural features, inhibitory α-glucosidase activity, and human gut microbiota. The salivary-gastrointestinal digestion results show that there is no significant change in the molecular weight of AABP-2B, and no free monosaccharides are released. This indicates that, under a simulated digestive condition, AABP-2B is not degraded and can be further utilized by gut microbiota. AABP-2B still possessed good inhibitory activity on α-glucosidase after salivary-gastrointestinal digestion, which may be attributed to the largely unchanged structural characteristics of AABP-2B after simulated digestion. Furthermore, in vitro fecal fermentation with AABP-2B after salivary-gastrointestinal digestion showed that AABP-2B modulated the gut microbiota structure and increased the relative proportions of Prevotella, Faecalibacterium, and Megasphaera. AABP-2B can also modify the intestinal flora composition by inhibiting pathogen growth. Moreover, the AABP-2B group resulted in a significant increase in short-chain fatty acid (SCFAs) content during fermentation. These findings demonstrate that AABP-2B can be used as a prebiotic or functional food to promote gut health.

Keywords: Anemarrhena asphodeloides Bunge; gut microbiota; polysaccharide; salivary–gastrointestinal digestion.

MeSH terms

  • Anemarrhena* / metabolism
  • Digestion
  • Fatty Acids, Volatile / metabolism
  • Fermentation
  • Humans
  • Polysaccharides / pharmacology
  • alpha-Glucosidases / metabolism

Substances

  • alpha-Glucosidases
  • Fatty Acids, Volatile
  • Polysaccharides