Single-Atom Anchored g-C3N4 Monolayer as Efficient Catalysts for Nitrogen Reduction Reaction

Nanomaterials (Basel). 2023 Apr 21;13(8):1433. doi: 10.3390/nano13081433.

Abstract

Electrochemical N2 reduction reaction (NRR) is a promising approach for NH3 production under mild conditions. Herein, the catalytic performance of 3d transition metal (TM) atoms anchored on s-triazine-based g-C3N4 (TM@g-C3N4) in NRR is systematically investigated by density functional theory (DFT) calculations. Among these TM@g-C3N4 systems, the V@g-C3N4, Cr@g-C3N4, Mn@g-C3N4, Fe@g-C3N4, and Co@g-C3N4 monolayers have lower ΔG(*NNH) values, especially the V@g-C3N4 monolayer has the lowest limiting potential of -0.60 V and the corresponding limiting-potential steps are *N2+H++e-=*NNH for both alternating and distal mechanisms. For V@g-C3N4, the transferred charge and spin moment contributed by the anchored V atom activate N2 molecule. The metal conductivity of V@g-C3N4 provides an effective guarantee for charge transfer between adsorbates and V atom during N2 reduction reaction. After N2 adsorption, the p-d orbital hybridization of *N2 and V atoms can provide or receive electrons for the intermediate products, which makes the reduction process follow acceptance-donation mechanism. The results provide an important reference to design high efficiency single atom catalysts (SACs) for N2 reduction.

Keywords: density functional theory; free energy; nitrogen reduction; single-atom catalytic; spin electrons distribution.

Grants and funding

The National Natural Science Foundation of China (Nos. 62074053, 12204430, 12204431), the Natural Science Foundation of Henan (Grant No. 222300420587).