Comparison of Thermal and Laser-Reduced Graphene Oxide Production for Energy Storage Applications

Nanomaterials (Basel). 2023 Apr 17;13(8):1391. doi: 10.3390/nano13081391.

Abstract

A way to obtain graphene-based materials on a large-scale level is by means of chemical methods for the oxidation of graphite to obtain graphene oxide (GO), in combination with thermal, laser, chemical and electrochemical reduction methods to produce reduced graphene oxide (rGO). Among these methods, thermal and laser-based reduction processes are attractive, due to their fast and low-cost characteristics. In this study, first a modified Hummer's method was applied to obtain graphite oxide (GrO)/graphene oxide. Subsequently, an electrical furnace, a fusion instrument, a tubular reactor, a heating plate, and a microwave oven were used for the thermal reduction, and UV and CO2 lasers were used for the photothermal and/or photochemical reduction. The chemical and structural characterizations of the fabricated rGO samples were performed by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy measurements. The analysis and comparison of the results revealed that the strongest feature of the thermal reduction methods is the production of high specific surface area, fundamental for volumetric energy applications such as hydrogen storage, whereas in the case of the laser reduction methods, a highly localized reduction is achieved, ideal for microsupercapacitors in flexible electronics.

Keywords: energy storage; graphene-related materials; reduced graphene oxide (rGO); thermal and laser methods.

Grants and funding

Grants ENE2017-88065-C2-1-R and -2-R funded by MCIN/AEI/ 10.13039/501100011033 and by ERDF A way of making Europe; Grants PID2020-114234RB-C21 and -C22 funded by MCIN/AEI/ 10.13039/501100011033; ERDF is also gratefully acknowledged for the partial funding of the XRD equipment employed for this study (Project FEDER 2004 CIEM05-34-031). A. Velasco is in receipt of an FPU grant from the Spanish Government (FPU18/03235), funded by MCIN/AEI/10.13039/501100011033 “ESF Investing in your future”. Funding was also obtained from the Comunidad de Madrid through project NMAT2D-CM (P2018/NMT-4511) and MINCIN and Comunidad de Madrid, “Materiales Disruptivos Bidimensionales (2D)” (MAD2D-CM)-UPM1.