Evaluating the Probiotic Potential of Lactic Acid Bacteria Implicated in Natural Fermentation of Table Olives, cv. Cobrançosa

Molecules. 2023 Apr 7;28(8):3285. doi: 10.3390/molecules28083285.

Abstract

The probiotic features of Lactiplantibacillus (L.) pentosus and L. paraplantarum strains, endogenous in Cobrançosa table olives from northeast Portugal, were assessed in terms of functional properties and health benefits. Fourteen lactic acid bacteria strains were compared with Lacticaseibacillus casei from a commercial brand of probiotic yoghurt and L. pentosus B281 from Greek probiotic table olives, in attempts to select strains with higher probiotic performances than those references. For functional properties, the i53 and i106 strains, respectively, exhibited: 22.2 ± 2.2% and 23.0 ± 2.2% for Caco-2 cell adhesion capacity; 21.6 ± 7.8% and 21.5 ± 1.4% for hydrophobicity; 93.0 ± 3.0% and 88.5 ± 4.5% for autoaggregation ability by 24 h of incubation; and ability to co-aggregate with selected pathogens-from 29 to 40% to Gram+ (e.g., Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212); and from 16 to 44% for Gram- (e.g., Escherichia coli ATCC 25922 and Salmonella enteritidis ATCC 25928). The strains proved to be resistant (i.e., halo zone ≤14 mm) to some antibiotics (e.g., vancomycin, ofloxacin, and streptomycin), but susceptible (i.e., halo zone ≥ 20 mm) to others (e.g., ampicillin and cephalothin). The strains exhibited health-beneficial enzymatic activity (such as acid phosphatase and naphthol-AS-BI-phosphohydrolase), but not health-harmful enzymatic activity (such as β-glucuronidase and N-acetyl-β-glucosaminidase). Additionally, the antioxidant activity and cholesterol assimilation features, respectively, of the strains were 19.6 ± 2.8% and 77.5 ± 0.5% for i53, and 19.6 ± 1.8% and 72.2 ± 0.9% for i106. This study indicated that the addition of L. pentosus strains i53 and/or i106 to Cobrançosa table olives is likely to enhance the added value of the final product, in view of the associated potential benefits upon human health.

Keywords: Caco-2 cell adhesion; Lactiplantibacillus strains; antioxidant activity; autoaggregation; cholesterol assimilation; functional properties.

MeSH terms

  • Caco-2 Cells
  • Escherichia coli
  • Fermentation
  • Humans
  • Lactobacillales*
  • Olea* / microbiology
  • Probiotics*

Grants and funding

This work was financially supported by: Project PROMETHEUS-POCI-01-0145-FEDER-029284, funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES; and LA/P/0045/2020 (ALiCE), and UIDB/00511/2020 and UIDP/00511/2020 (LEPABE), funded by national funds through FCT/MCTES (PIDDAC); and UIDB/50006/2020 and UIDP/50006/2020 (LAQV/REQUIMTE), funded by national funds through FCT/MCTES. Joana Coimbra-Gomes was financially supported by a research grant under partnership agreement with the Faculty of Engineering of University of Porto, inserted in project PROMETHEUS-POCI-01-0145-FEDER-029284. Author Patrícia J.M. Reis was financially supported by a work contract, inserted in project PROMETHEUS-POCI-01-0145-FEDER-029284.