Genome Mining and Screening for Secondary Metabolite Production in the Endophytic Fungus Dactylonectria alcacerensis CT-6

Microorganisms. 2023 Apr 8;11(4):968. doi: 10.3390/microorganisms11040968.

Abstract

Endophytic fungi are a treasure trove of natural products with great chemical diversity that is largely unexploited. As an alternative to the traditional bioactivity-guided screening approach, the genome-mining-based approach provides a new methodology for obtaining novel natural products from endophytes. In our study, the whole genome of an endophyte, Dactylonectria alcacerensis CT-6, was obtained for the first time. Genomic analysis indicated that D. alcacerensis CT-6 has one 61.8 Mb genome with a G+C content of 49.86%. Gene annotation was extensively carried out using various BLAST databases. Genome collinearity analysis revealed that D. alcacerensis CT-6 has high homology with three other strains of the Dactylonectria genus. AntiSMASH analysis displayed 45 secondary metabolite biosynthetic gene clusters (BGCs) in D. alcacerensis CT-6, and most of them were unknown and yet to be unveiled. Furthermore, only six known substances had been isolated from the fermented products of D. alcacerensis CT-6, suggesting that a great number of cryptic BGCs in D. alcacerensis CT-6 are silent and/or expressed at low levels under conventional conditions. Therefore, our study provides an important basis for further chemical study of D. alcacerensis CT-6 using the gene-mining strategy to awaken these cryptic BGCs for the production of bioactive secondary metabolites.

Keywords: antiSMASH; biosynthetic gene cluster; endophytic fungi; genome sequencing; secondary metabolite.