Measurements and Modelling of Thermally Induced Warpages of DIMM Socket Server PCB Assembly after Solder Reflow Processes

Materials (Basel). 2023 Apr 19;16(8):3233. doi: 10.3390/ma16083233.

Abstract

The thermal warpage of a server-computer-used DIMM socket-PCB assembly after the solder reflow process is studied experimentally, theoretically, and numerically, especially along the socket lines and over the entire assembly. Strain gauge and shadow moiré are used for determining the coefficients of thermal expansion of the PCB and DIMM sockets and for measuring the thermal warpages of the socket-PCB assembly, respectively, while a newly proposed theory and a finite element method (FEM) simulation are used to calculate the thermal warpage of the socket-PCB assembly in order to understand its thermo-mechanical behavior and then further identify some important parameters. The results show that the theoretical solution validated by the FEM simulation provides the mechanics with the critical parameters. In addition, the cylindrical-like thermal deformation and warpage, measured by the moiré experiment, are also consistent with the theory and FEM simulation. Moreover, the results of the thermal warpage of the socket-PCB assembly from the strain gauge suggest a warpage dependence on the cooling rate during the solder reflow process, due to the nature of the creep behavior in the solder material. Finally, the thermal warpages of the socket-PCB assemblies after the solder reflow processes are provided through a validated FEM simulation for future designs and verification.

Keywords: DIMM socket; finite element method; printed circuit board; shadow moiré; strain gauge; thermal warpage.