Changes and Trends-Efficiency of Physical Blowing Agents in Polyurethane Foam Materials

Materials (Basel). 2023 Apr 18;16(8):3186. doi: 10.3390/ma16083186.

Abstract

This work developed a novel method for measuring the effective rate of a PBA (physical blowing agent) and solved the problem that the effective rate of a PBA could not be directly measured or calculated in previous studies. The results show that the effectiveness of different PBAs under the same experimental conditions varied widely, from approximately 50% to almost 90%. In this study, the overall average effective rates of the PBAs HFC-245fa, HFO-1336mzzZ, HFC-365mfc, HFCO-1233zd(E), and HCFC-141b are in descending order. In all experimental groups, the relationship between the effective rate of the PBA, rePBA, and the initial mass ratio of the PBA to other blending materials in the polyurethane rigid foam, w, demonstrated a trend of first decreasing and then gradually stabilizing or slightly increasing. This trend is caused by the interaction of PBA molecules among themselves and with other component molecules in the foamed material and the temperature of the foaming system. In general, the influence of system temperature dominated when w was less than 9.05 wt%, and the interaction of PBA molecules among themselves and with other component molecules in the foamed material dominated when w was greater than 9.05 wt%. The effective rate of the PBA is also related to the states of gasification and condensation when they reach equilibrium. The properties of the PBA itself determine the overall efficiency, while the balance between the gasification and condensation processes of the PBA further leads to a regular change in efficiency with respect to w around the overall average level.

Keywords: efficiency; environmental friendliness; equilibrium; physical blowing agent; polyurethane.

Grants and funding

This research received no external funding.